Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts – A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex
نویسندگان
چکیده
Patterned transcranial magnetic stimulation (TMS) such as theta burst stimulation (TBS) or quadri-pulse stimulation (QPS) can induce changes in cortico-spinal excitability, commonly referred to as long-term potentiation (LTP)-like and long-term depression (LTD)-like effects in human motor cortex (M1). Here, we aimed to test the plasticity-inducing capabilities of a novel protocol that merged TBS and QPS. 360 bursts of quadri-pulse TBS (qTBS) were continuously given to M1 at 90% of active motor threshold (1440 full-sine pulses). In a first experiment, stimulation frequency of each burst was set to 666 Hz to mimic the rhythmicity of the descending cortico-spinal volleys that are elicited by TMS (i.e., I-wave periodicity). In a second experiment, burst frequency was set to 200 Hz to maximize postsynaptic Ca2+ influx using a temporal pattern unrelated to I-wave periodicity. The second phase of sinusoidal TMS pulses elicited either a posterior-anterior (PA) or anterior-posterior (AP) directed current in M1. Motor evoked potentials (MEPs) were recorded before and after qTBS to probe changes in cortico-spinal excitability. PA-qTBS at 666 Hz caused a decrease in PA-MEP amplitudes, whereas AP-qTBS at 666 Hz induced an increase in mean AP-MEP amplitudes. At a burst frequency of 200 Hz, PA-qTBS and AP-qTBS produced an increase in cortico-spinal excitability outlasting for at least 60 minutes in PA- and AP-MEP amplitudes, respectively. Continuous qTBS at 666 Hz or 200 Hz can induce lasting changes in cortico-spinal excitability. Induced current direction in the brain appears to be relevant when qTBS targets I-wave periodicity, corroborating that high-fidelity spike timing mechanisms are critical for inducing bi-directional plasticity in human M1.
منابع مشابه
Insights on the neural basis of motor plasticity induced by theta burst stimulation from TMS-EEG.
Transcranial magnetic stimulation (TMS) is a useful tool to induce and measure plasticity in the human brain. However, the cortical effects are generally indirectly evaluated with motor-evoked potentials (MEPs) reflective of modulation of cortico-spinal excitability. In this study, we aim to provide direct measures of cortical plasticity by combining TMS with electroencephalography (EEG). Conti...
متن کامل5 kHz Transcranial Alternating Current Stimulation: Lack of Cortical Excitability Changes When Grouped in a Theta Burst Pattern
Background: Suprathreshold transcranial single pulse electrical stimulation (tES) is painful and not applicable in a repetitive mode to induce plastic after-effects. Objective: In order to circumvent this pain problem, we applied here a 5 kHz transcranial alternating current stimulation (tACS) theta burst protocol with a field intensity of up to 10 mA to the primary motor cortex (M1). Furthermo...
متن کاملBalancing the excitability of M1 circuitry during movement observation without overt replication
Although observation of a movement increases the excitability of the motor system of the observer, it does not induce a motor replica. What is the mechanism for replica suppression? We performed a series of experiments, involving a total of 66 healthy humans, to explore the excitability of different M1 circuits and the spinal cord during observation of simple movements. Several strategies were ...
متن کاملUnilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowing.
Inhibitory patterns of repetitive transcranial magnetic stimulation (rTMS) were applied to pharyngeal motor cortex in order to establish its role in modulating swallowing activity and provide evidence for functionally relevant hemispheric asymmetry. Healthy volunteers underwent single pulse TMS before and for 60 min after differing intensities of 1 Hz rTMS (n = 9, 6 male, 3 female, mean age 34 ...
متن کاملDepression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity.
Metaplasticity refers to the activity-dependent modification of the ability of synapses to undergo subsequent potentiation or depression, and is thought to maintain homeostasis of cortical excitability. Continuous magnetic theta-burst stimulation (cTBS; 50 Hz-bursts of 3 subthreshold magnetic stimuli repeated at 5 Hz) is a novel repetitive magnetic stimulation protocol used to model changes of ...
متن کامل